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Modern linear control theory has recently been established as a viable tool for de-
veloping effective, spatially localized convolution kernels for the feedback control and
estimation of linearized Navier–Stokes systems. In the present paper, the effectiveness
of these kernels for significantly expanding the basin of attraction of the laminar state
in a subcritical nonlinear channel flow system is quantified using direct numerical
simulations for a range of Reynolds numbers (ReCL

= 2000, 3000 and 5000) and for
a variety of initial conditions of physical interest. This is done by quantifying the
change in the transition thresholds (see Reddy et al. 1998) when feedback control
is applied. Such transition thresholds provide a relevant measure of performance for
transition control strategies even in the nonlinear regime. Initial flow perturbations
with streamwise vortices, oblique waves, and random excitations over an array of
several Fourier modes are considered. It is shown that the minimum amplitude of
these initial flow perturbations that is sufficient to excite nonlinear instability, and
thereby promote transition to turbulence, is significantly increased by application
of the control feedback. The kernels used to apply the feedback are found to decay
exponentially with distance far from the origin, as predicted by the analysis of Bamieh,
Paganini & Dahleh (2002). In the present paper, it is demonstrated via numerical
simulation that truncation of these spatially localized convolution kernels to spatially
compact kernels with finite non-zero support does not significantly degrade the
effectiveness of the control feedback. In addition to the new state-feedback control
results, exponential convergence of a localized physical-space state estimator with
wall measurements is also demonstrated. The estimator and the full-state feedback
controller are then combined to obtain a wall-information-based linear compensator.
The compensator performance is also quantified, and key issues related to improving
the performance of this compensator, which is degraded compared with the full-state
feedback controller, are discussed.

1. Introduction
1.1. Stability and transition in shear flows

The process of laminar–turbulent transition is of importance in many engineering
applications as well as an active research area within the field of fundamental flow
physics. Laminar flows typically exhibit much less drag, mixing, and heat transfer than
their turbulent counterparts, and are often more prone to separate in the presence of
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an adverse pressure gradient. Thus, effective strategies both to delay and to accelerate
the transition process are of interest in a variety of engineering applications.

The transition process most often starts with the growth of small perturbations
of a laminar base flow. It can therefore be modelled, at least in its initial stages,
by the linearized Navier–Stokes equation. Traditionally, solutions of this equation
have been characterized in terms of the exponential growth or decay rates of its
individual eigenmodes. In particular, for boundary-layer and channel flows, the
Fourier-transformed linearized Navier–Stokes equations may easily be manipulated
into the Orr–Sommerfeld and Squire equations. The least-stable eigenmodes of this
system of equations vary in the streamwise direction only, and are referred to as
Tollmien–Schlichting (TS) waves. For laminar base flows without inflection points,
these waves are two-dimensional and grow on a viscous time scale. In the past, the
Reynolds number at which one of these waves becomes linearly unstable, the so-called
critical Reynolds number, has been a feature of particular interest. The calculation of
exponential growth rates and critical Reynolds numbers for a wide variety of flows has
been the object of numerous efforts by researchers investigating flow stability over the
last century; key results are compiled in Drazin & Reid (1981). One common path
to transition is the exponential growth of two-dimensional TS-waves, followed by
a secondary instability of these finite-amplitude waves to small-amplitude three-
dimensional perturbations and the rapid evolution of the flow towards a fully turbulent
state (see e.g. Herbert 1988).

In many shear flows, transition is observed well below the critical Reynolds number
predicted by linear theory. During the last decade, several researchers have investigated
the mechanisms responsible for this subcritical transition. It has been found that a key
feature related to subcritical transition is the non-orthogonality of the eigenvectors
of the linearized flow system, that is, the Orr–Sommerfeld/Squire operator (Butler &
Farrell 1992; Reddy & Henningson 1993; Henningson & Reddy 1994). The subcritical
growth in the solution to the linearized equations is associated with a superposition
of non-orthogonal, decaying modes; as the individual decay rates of the superposed
modes are different, destructive interference of the various modes can decrease as time
evolves, leading to the possibility for transient energy growth which is sometimes quite
large. Such ‘non-modal growth’ is often easily excited by external disturbance forces
acting on the system (Trefethen et al. 1993). The resulting flow perturbations that
grow most, which we label as ‘worst-case’ perturbations (but are sometimes labelled as
‘optimal’ perturbations, depending on the viewpoint), are perturbations which vary in
the spanwise direction only, initially appearing as streamwise vortices and eventually
evolving into streamwise streaks. These perturbations are fundamentally different from
Tollmien–Schlichting waves, which vary in the streamwise direction only. Worst-case
perturbations were, for boundary-layer and channel flows, first calculated by Butler
& Farrell (1992). Several transition scenarios initiated by perturbations experiencing
non-modal growth have been investigated; for a recent review of subcritical transition
scenarios, see Schmid & Henningson (2001). In the present paper, we will discuss the
application of modern flow control techniques to the problem of subcritical transition
in plane channel flow; to set the stage, we first describe in greater detail some relevant
background on the subcritical transition process.

1.2. Canonical subcritical transition problem: plane channel flow

Small perturbations {u, v, w} to a laminar flow U (y) in a channel (figure 1) are
governed by the Orr–Sommerfeld/Squire equations. These equations are derived
from the Fourier transform (in the x- and z-directions) of the Navier–Stokes equation
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Figure 1. Geometry of the flow domain and coordinate system used.

linearized about a mean flow profile U (y), and may be written for each wavenumber
pair {kx, kz} as

�̂ ˙̂v = {−i kx U �̂ + i kx U ′′ + �̂(�̂/ReCL
)}v̂, (1.1a)

˙̂ω = {−i kz U ′} v̂ + {−i kx U + �̂/ReCL
} ω̂, (1.1b)

where ω̂ is the wall-normal vorticity, �̂ = ∂2/∂y2 − k2, k2 = k2
x + k2

z , hats denote
Fourier coefficients, and primes denote wall-normal derivatives. The Reynolds number
ReCL

= UCL
h/ν parameterizes the problem, where h is the half-width of the channel,

UCL
is the centreline velocity, and ν is the kinematic viscosity of the fluid. Without loss

of generality, we assume the walls are located at y = ±1.
Assuming modes with exponential time dependence, the above system becomes

an eigenvalue problem with two distinct solution families. The first family of
solutions contains the Orr–Sommerfeld modes, which involve eigensolutions of the
equation for the wall-normal velocity. The least stable Orr–Sommerfeld mode is the
Tollmien–Schlichting wave mentioned earlier. For the plane channel flow problem
under consideration here, there are no exponentially growing solutions for Reynolds
numbers ReCL

< 5772 (Orszag 1971). The second family of solutions contains the
Squire modes and has zero wall-normal velocity. It can be shown that the Squire
modes are always stable.

Transition experiments show that plane channel flows typically undergo transition
to turbulence at Reynolds numbers as low as ReCL

= 1000 (Patel & Head 1969;
Carlson, Widnall & Peeters 1982). The discrepancy between the critical Reynolds
number for linear instability and the Reynolds number at which transition is actually
observed is a direct consequence of the non-normality of the Orr–Sommerfeld/Squire
operator for the plane channel flow problem, as mentioned previously. As a result,
there is a possibility of transient disturbance energy growth, which scales as O(Re2

CL
)

and has a maximum magnitude of about a factor of 200 at ReCL
= 1000 (Reddy

& Henningson 1993). In addition, there is enhanced sensitivity of such a system to
external disturbance forcing: the response of the output energy can be up to O(Re4

CL
)

greater than the input disturbance energy, as explained by Trefethen et al. (1993). This
heightened system sensitivity is mainly associated with the evolution of streamwise
vortices into streamwise streaks.
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Figure 2. Visualizations of two of the initial flow perturbations considered in the transition
threshold calculations: (a) oblique waves, showing positive (light) and negative (dark)
isosurfaces of half of the maximum magnitude of the normal velocity, and (b) streamwise
vortices, showing contours of v (solid contours for positive velocity and dashed for negative),
and cross-flow velocity vectors (projected onto the z, y-plane) at x = 0.

1.3. Characterizing nonlinear instability: transition thresholds

Two transition scenarios starting with small initial flow perturbations experiencing
large non-modal growth have been investigated by Reddy et al. (1998), and involve
the growth of primarily spanwise-varying structures to finite amplitude followed by
their subsequent secondary instability. These scenarios are initialized with (a) a pair
of superimposed oblique waves, and (b) streamwise vortices with an antisymmetric
v component across y = 0, as illustrated in figures 2(a) and 2(b). Notice that
1% random noise is added to all transition scenarios tested in order to break
the symmetries. Note also that the streamwise vortices with maximum transient
growth actually have a v component which is symmetric across y = 0; however,
similar transition scenarios starting with symmetric streamwise vortices have higher
threshold energies for transition (Reddy et al. 1998). The energy evolution in various
wavenumber components of the flow for these two transition scenarios are shown in
figure 3. We see in figure 3(a) that the oblique waves (in the {1, 1} component) induce
streamwise vortices (in the {0, 2} and {0, 4} components) that efficiently generate
streamwise streaks (thereby undergoing relatively large transient energy growth). In
figure 3(b) the scenario is similar, but the streamwise vortices are introduced directly
(that is, as the initial flow perturbation). Secondary instability of these streamwise
streaks (excited by the noise in the initial flow perturbations) ultimately causes the
breakdown to turbulence.

To quantify the transition process, Reddy et al. (1998) defined a transition time and
determined the dependence of this time on the energy of the initial flow perturbation.
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Figure 3. Energy evolution in various wavenumber components {kx, kz} during the
channel-flow transition process for (a) the oblique-wave transition scenario, and (b) the
streamwise-vortex transition scenario. Plotted are: , the total flow perturbation energy in
all wavenumber components other than {0, 0}; as well as the energy in the {1, 1} component
( ), the {0, 2} component ( ), the {0, 4} component ( ), the {1, 2} component
( ), and the other components ( ). The Reynolds number is ReCL

= 2000 and the

energy density of the initial flow perturbation is 2.6×10−6 for the oblique wave and 1.4×10−5

for the streamwise vortex. Notice for comparison that the energy density of the laminar mean
flow is 0.2666 in all cases.

The transition time T so defined is the time during which the friction coefficient
cf increases from its initial value (near that of the laminar flow) to half of its
mean turbulent value, i.e. the time T when cf (T ) = 0.5(cf,laminar + cf,turbulent ). If the
turbulent state is never reached, we define T to be infinite. The lowest perturbation
energy density resulting in a finite value of T is defined to be the transition threshold
for that perturbation structure.

Such transition thresholds can be viewed as indicators of how sensitive the nonlinear
evolution of the flow is to different initial flow perturbations, and therefore provide
an excellent means of quantifying the performance of a transition control strategy on
the full nonlinear system. In this paper, we will develop and test full-state feedback
controllers as well as wall-information-based compensators in order to stabilize the
nonlinear flow system. We will quantify the effectiveness of these control strategies in
terms of how well they can increase these transition thresholds.

1.4. Flow control background

Using linear control theory for controlling flow instabilities is a fairly new concept.
Early work on controlling instabilities in laminar flows has been mostly devoted to
using the wave superposition principle for anti-phase modal suppression. The papers
by Thomas (1990) and Metcalfe (1994) review the early efforts on the control of
Tollmien–Schlichting (TS) waves using the anti-phase control strategy. Other reviews
on flow control can be found in e.g. Gad-el-Hak (1996), Lumley & Blossey (1998),
and Bewley (2001). We review here a small subset of this recent work which is related
to the present paper.

Much of the focus of the flow control community in recent years has been on
the problem of turbulence control and drag reduction. One of the most popular
turbulence control strategies in numerical simulations is the opposition control
strategy introduced by Choi, Moin & Kim (1994). With this approach, a detection
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plane for one of the velocity components is introduced in the flow near the wall
(a distance from the wall of y+ ≈ 10 is common). The detected velocity is then phase
shifted by 180◦ and applied as a boundary condition on the wall. With this method,
the drag in a turbulent channel may be reduced by as much as 25% using the normal
velocity component, and by as much as 30% using the spanwise velocity component.
A similar control problem was studied by Farrell & Ioannou (1996) by applying the
opposition control strategy to a linear system model. They found that the variance of
their parameterized turbulence model could be reduced by as much as 70% near the
wall by application of this type of strategy.

The physical mechanism behind the success of opposition control is related to
manipulation of near-wall streamwise vortices. An alternative way of viewing the
near-wall vortices is presented in Koumoutsakos (1999), which resulted in a control
scheme providing about 40% drag reduction in a turbulent channel flow at Reτ = 180.
This feedback control scheme relies on measurement and control of the spanwise
‘vorticity flux’ at the wall. Lee et al. (1997) used a neural network to find adaptively
a feedback law for the local wall shear stress, achieving about 20% drag reduction.
This paper also approximated the converged neural network rule by a simple linear
control rule; this simpler strategy was found to have almost the same effectiveness on
the turbulent flow.

Possible applications in fluid mechanics of gradient-based ‘optimal’ control tech-
niques were identified and analysed in the seminal paper by Abergel & Temam (1990).
These techniques optimize the evolution of a partial differential equation system over
a finite time horizon with gradient-based strategies derived from the calculation of
an appropriately defined adjoint field. Choi et al. (1993) introduced the so-called
‘suboptimal’ approximation of the optimal control problem. This approximation
significantly simplifies the numerical computations required to compute the control in
such an algorithm by, among other approximations, considering only an infinitesimal
time horizon each time the control is computed. By so doing, difficult nonlinear
terms may be approximated or neglected, effectively introducing a ‘Stokes model’ for
determining the controls for a Navier–Stokes system. This methodology was applied
to a turbulent channel flow at Reτ = 100 by Bewley & Moin (1994), resulting in
a 17% drag reduction. The related suboptimal control work of Lee, Kim & Choi
(1998) also uses the suboptimal approximation to derive appropriate control strategies
targeting carefully designed objective functions based on wall pressure fluctuations or
wall shear stress. This work resulted in a skin friction drag reduction of up to 22%.

When the ‘suboptimal’ approximation is not used, optimization of controls in the
cumbersome receding-horizon model-predictive control (MPC) setting is required.
With such a strategy, the evolution of the system over a finite time interval is
considered, and the controls are optimized over this finite interval using an iterative,
gradient-based strategy. Once optimized, the controls over a subset of this finite
time interval are applied to the evolving flow system, then the iterative optimization
procedure is begun anew on a new time interval. It is possible with this method
to completely relaminarize the flow in a channel with turbulent initial conditions at
Reτ = 100, and this has been done using direct numerical simulations (DNS) by
Bewley, Moin & Temam (2001) and in related work using large-eddy simulations
(LES) by Collis et al. (2000).

In many applications, it seems plausible that transition to turbulence can be
substantially delayed by application of linear control feedback. By so doing, the need
for turbulence control strategies which are effective in the nonlinear regime can be
avoided. Since energy growth in a fluid flow is a linear process, linear-model-based



Linear feedback control and estimation of transition in plane channel flow 155

control strategies based on the linearized equations of fluid motion are appropriate
for at least the linear stages of the transition process. Based on the findings reported
by e.g. Henningson (1996); Farrell & Ioannou (1996) and Kim & Lim (2000), the
importance of linear mechanisms for sustaining turbulence, especially the coupling
between normal velocity and normal vorticity, indicate that linear controllers might
also be useful in controlling fully developed turbulence. Use of the linearized equations
for flow control was considered in Hu & Bau (1994), where a simple proportional
control strategy based on wall shear measurements was used to stabilize a laminar
plane channel flow through heating and cooling of the walls in order to change
the viscosity of the flow. This work suggested that the influence of the applied
control on the domain of attraction of the laminar state should be quantified. This
is similar to what is accomplished in the present work using model-based control
algorithms. In the paper by Joshi, Speyer & Kim (1997), classical linear control
theory was applied to stabilize the flow in a two-dimensional channel using blowing
and suction on the channel walls coordinated with measurements of the wall shear.
The control problem was formulated using a streamfunction approach suitable for
two-dimensional problems. Extension of this work using modern control theory and
employing model reduction for the compensator is presented in Joshi, Speyer & Kim
(1999), and the corresponding multi-wavenumber case is treated in Cortelezzi et al.
(1998). In Lee et al. (2001) extension of the two-dimensional controller to a three-
dimensional one by augmenting an ad hoc scheme in the third direction is suggested
and tested in a turbulent flow. The streamfunction formulation was also used by
Baramov et al. (2000) to apply robust (H∞) control to the two-dimensional fluid
system with multi-wavenumber control, accounting for effects of localized actuation
and sensing. A complete formulation for model-based control of three-dimensional
perturbations is presented in Bewley & Liu (1998).

The present paper builds on the work by Bewley & Liu (1998), where both optimal
(H2) and robust (H∞) control strategies were applied to isolated wavenumber pairs
in a linearized channel flow system with three-dimensional perturbations. The H2

problem was extended, using a slightly modified formulation, to compute the feedback
gains for a large array wavenumber pairs in Högberg & Bewley (2000). Upon inverse
Fourier transform, a control law was found in which the control gains, which are
now expressed as convolution kernels, are localized in physical space (that is, they
eventually decay exponentially in space away from the origin) and are resolved
well on the numerical grid. These control kernels were found to be independent of
both the grid resolution and the size of the computational box, so long as the grid
was sufficiently fine and the box size sufficiently large. Application of these linear
controllers to instabilities in spatial boundary layer flows was performed in Högberg
& Henningson (2002) for stationary as well as time-varying perturbations in Blasius
and Falkner–Skan–Cooke boundary layers.

1.5. Outline of the paper

In the current paper, the ability of constant-gain linear controllers to prevent transition
in channel flows is investigated and quantified. Transition thresholds are used as a
relevant measure of performance, allowing quantitative comparisons of different
control schemes in terms of how well they work to inhibit transition to turbulence
in the full nonlinear channel flow system. We also introduce a state estimator, in the
form of an extended Kalman filter, that can be used to reconstruct the flow field
from wall measurements with exponential convergence. This problem is ‘dual’ to the
state-feedback control problem, meaning that the solution technique is closely related
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to the solution technique used for solving the state-feedback control problem. The
state estimator is then combined with the controller, and the ability of the resulting
compensator to prevent transition in channel flow based on wall information only is
quantified using similar techniques.

The remainder of this paper is organized as follows. In § 2, the governing equations
and the formulation of the control and estimation problem is reviewed. Properties
of the resulting control and estimation kernels are discussed and a short description
of the numerical methods used is given. In § 3, the results of the many simulations
required to determine the transition thresholds are summarized for both the full-state
feedback case and the wall-information-based compensator case which combines the
state-feedback controller with an extended Kalman filter. Conclusions are outlined
in § 4.

2. Approach
The initial stages of transition are accurately modeled by the linearized Navier–

Stokes equations. Straightforward manipulation of these equations results in the
Orr–Sommerfeld/Squire equations for small perturbations to a mean flow. These
equations can be transformed into Fourier space, where the equations for different
wavenumber pairs completely decouple and can be treated separately (equations
(1.1a) and (1.1b)). Bewley & Liu (1998) suggested computing optimal control and
estimator feedback rules for each wavenumber pair separately in Fourier space, and
then combining them in an inverse Fourier transform, resulting in physical-space
convolution kernels describing the control and estimation feedback rules. The elegant
analysis of Bamieh, Paganini & Dahleh (2002) (also reported in Bamieh, Paganini
& Dahleh 1998, 1999; Paganini & Bamieh 1998) proved that, for a broad class of
spatially invariant systems such as the present one, the corresponding control and
estimation convolution kernels will be ‘spatially localized’, meaning that they will
decay exponentially in space sufficiently far from the origin. Truncation of such
localized kernels results in kernels with spatially compact non-zero support (that is,
the truncated kernels are zero outside a finite radius of the origin). Since the localized
kernels eventually decay exponentially, this truncation may be performed to any
desired degree of accuracy. It is found that the shape of the truncated kernels so
computed converges as the box size is increased; this effectively relaxes the artificial
assumption of spatial periodicity imposed by utilizing the Fourier series representation
in the kernel derivation. In practice, this enables the convolution kernels so computed
to be used in a periodic channel of any size, or, in fact, in the physical case of non-
spatially periodic flows (i.e. in the limit of a spatially periodic box of infinite length
and width). In § 2.3.2, it is demonstrated that the current approach indeed yields
such localized kernels with exponential decay. The issue of controlling and estimating
infinite-dimensional systems based on a finite-dimensional models is discussed further
in e.g. Ito & Morris (1998), where details of the mathematical properties of the Riccati
equations are also presented.

2.1. Summary of the derivation of the linear compensator

In this section, we give a brief summary of the derivation of the control and estimation
problem. As a first step, the governing equations need to be put in a form suitable
for application of standard control theory. The Orr–Sommerfeld/Squire equations
(1.1a) and (1.1b) are usually written with a Laplacian operator on the left-hand
side. Fortunately, this Laplacian operator can, with care, be inverted if the boundary
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conditions are taken into account properly, thus resulting in the desired form of the
governing equations:

˙̂v = �̂−1{−i kx U �̂ + i kx U ′′ + �̂(�̂/ReCL
)}︸ ︷︷ ︸

L̂OS

v̂, (2.1a)

˙̂ω = {−i kz U ′}︸ ︷︷ ︸
L̂C

v̂ + {−i kx U + �̂/ReCL
}︸ ︷︷ ︸

L̂SQ

ω̂. (2.1b)

Writing these equations in operator form, we obtain

˙̂x = N x̂, (2.2)

where

N =

(
L̂OS 0

L̂C L̂SQ

)
and x̂ =

(
v̂

ω̂

)
.

The control φ is the wall-normal velocity component at the walls: φ̂ =

(
v̂(+1)

v̂(−1)

)
.

In order to formulate an appropriate objective function, we will make use of the
expression for the energy E of the flow perturbations:

E =
1

2V

∫
Ω

(u2 + v2 + w2) dV =
∑
kx ,kz

1

8k2

∫ 1

−1

(
k2|v̂|2 +

∣∣∣∣∂v̂

∂y

∣∣∣∣2 + |ω̂|2
)

dy

=
∑
kx ,kz

E(kx, kz). (2.3)

Note that we have defined E(kx, kz) as the contribution of the component of the
flow perturbation at each {kx, kz} wavenumber to the total energy E; by Parseval’s
theorem, these contributions are completely decoupled. In the present notation, these
contributions may be written as E = x̂∗Q x̂, where the operator Q is made up of the
several operators needed to describe the energy measure, as illustrated above, and the
asterisk denotes the conjugate transpose. Due to the separation principle of optimal
control theory, implying that the dynamics of the controlled state and the closed-loop
estimation error are decoupled (see e.g. Skelton 1988, p. 411), the estimation and
control problems may be treated separately in the derivation that follows.

2.1.1. Control strategy

In order to obtain a standard state-space representation of the boundary-controlled
Orr–Sommerfeld/Squire equations, to which standard linear control theory may be
applied, the inhomogeneous boundary condition forcing needs to be accounted for
properly. By a straightforward ‘lifting’ procedure, the effect of the boundary condition
forcing on the original flow system can be represented by volume forcing near the
wall in a modified system with homogeneous boundary conditions. Using the principle
of superposition, the solution of the original system with inhomogeneous boundary
conditions, x̂, can be recovered by combining this ‘homogeneous solution’, x̂h, with
an appropriately defined ‘particular solution’, x̂p , which is used simply to relate the
boundary conditions to the volume forcing in a convenient manner; that is

x̂ = x̂h + x̂p →
{

v̂ = v̂h + v̂p,

ω̂ = ω̂h + ω̂p.
(2.4)
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In the present system, two particular solutions are used for each wavenumber pair
{kx, kz}, one to account for the lifting of the control applied at the top wall, and
the other to account for the lifting of the control applied at the bottom wall; these

particular solutions are denoted by x̂p = Z φ̂ (note that φ̂ has two components,
one for each wall). Using the subscript s to indicate the fact that we have finally
arrived at the ‘standard state-space form’, the resulting system of equations for each
wavenumber pair {kx, kz} may now be written as

˙̂xs = A x̂s + B ûs,

where

A =

(
N NZ
0 0

)
, B =

(
−Z

I

)
, x̂s =

(
x̂h

φ̂

)
, ûs =

∂φ̂

∂t
.

Note that the control variable in this formulation of the system is actually the time
derivative of the normal velocity on the walls. This formulation for the state equation,
in addition to being the natural outcome of the lifting procedure, allows us to penalize
the time derivative of the blowing/suction distribution directly in the cost function,
thus resulting in a control strategy which generates ‘regular’ (that is, smoothly varying)
control distributions on the wall. In the present work, the particular solutions are
defined such that N x̂p = 0, which simplifies the resulting equations significantly. The
energy measure may now be written

E = x̂∗
s

(
Q QZ

Z∗Q Z∗QZ

)
x̂s = x̂∗

s Q̂ s x̂s .

Defining an objective function combining measures of the flow perturbation energy
and the ‘control effort’,

Ĵ =

∫ ∞

0

(x̂∗
s Q̂ s x̂s + �2û∗

s ûs) dt,

the control ûs minimizing Ĵ may now be found with standard control theory:

ûs = K̂ s x̂s, where K̂ s = − 1

�2
B∗X

and X is the Hermetian positive-definite solution to the operator Riccati equation(
AX + XA∗ − XB

1

�2
B∗X + Q̂ s

)
x̂s = 0 ∀ admissible x̂s . (2.5)

Notice that �2 is an adjustable parameter regulating a penalty on the integral of the
square of the time derivative of the blowing/suction distribution on the walls, allowing
the control design to impose a degree of ‘regularity’ on the control distribution. The
integral of the square of the control velocity itself is naturally penalized through

the lifting terms in Q̂ s; though additional control penalties on this term could be
imposed, this was not found to be necessary in the present work. Due to the specific

definition of x̂s used above, the feedback rule K̂ s(kx, kz) so obtained is for feedback

of the homogeneous part of the flow only. By modifying K̂ s(kx, kz) to incorporate the
effect of the feedback of the inhomogeneous part of the flow, kernels for the total flow
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may now be obtained. Decomposing ûs = K̂ s x̂s and x̂p = Z φ̂ according to

(
˙̂v(+1)
˙̂v(−1)

)
=

(
K̂ s,+1,v̂h

K̂ s,+1,ω̂h
K̂ s,+1,v̂(+1) K̂ s,+1,v̂(−1)

K̂ s,−1,v̂h
K̂ s,−1,ω̂h

K̂ s,−1,v̂(+1) K̂ s,−1,v̂(−1)

)


v̂h

ω̂h

v̂(+1)

v̂(−1)


 ,

(
v̂p

ω̂p

)
=

(
Z v̂p,v̂(+1) Z v̂p,v̂(−1)

Z ω̂p,v̂(+1) Z ω̂p,v̂(−1)

) (
v̂(+1)
v̂(−1)

)
,

it is convenient to rearrange the gain matrix K̂ s into a form K̂ with which the simple

control feedback rule ûs = K̂ x̂ may be employed. Decomposing this new feedback
rule such that (

˙̂v(+1)
˙̂v(−1)

)
=

(
K̂+1,v̂ K̂+1,ω̂

K̂−1,v̂ K̂−1,ω̂

)(
v̂

ω̂

)
(2.6)

and defining

K̂±1,v̂(+1) = K̂ s,±1,v̂(+1) − K̂ s,±1,v̂h
Z v̂p,v̂(+1) − K̂ s,±1,ω̂h

Z ω̂p,v̂(+1)

K̂±1,v̂(−1) = K̂ s,±1,v̂(−1) − K̂ s,±1,v̂h
Z v̂p,v̂(−1) − K̂ s,±1,ω̂h

Z ω̂p,v̂(−1),

it follows that

K̂±1,v̂ =
(
K̂±1,v̂(+1) K̂ s,±1,v̂h

K̂±1,v̂(−1)

)
K̂±1,ω̂ =

(
0 K̂ s,±1,ω̂h

0
)
.

The feedback control rule ûs = K̂ x̂ effectively performs a discrete integration in y

across the channel, with the gains K̂±1,v̂ and K̂±1,ω̂ as weights. As a cosine stretching
function is used for the distribution of gridpoints in the y-direction in this formulation
(see Bewley & Liu 1998), it is necessary to scale the control gains appropriately in

order to convert the gain K̂ in (2.6) to a grid-independent weighting function K̂ on a
continuous integral of the form

˙̂v(y = ±1) =

∫ 1

−1

[K̂±1,v̂(ȳ)v̂(ȳ) + K̂±1,ω̂(ȳ)ω̂(ȳ)]dȳ (2.7)

at each wavenumber pair {kx, kz}. We denote the necessary (and straightforward)

transformation symbolically as K̂ = Ξ−1K̂ . Incorporation of the weights K̂ into a
nonlinear DNS code, in turn, requires scaling of the control gains by the grid stretching
function used in the nonlinear simulation code in a similar fashion. Feedback rules
are computed for an array of wavenumber pairs and then inverse Fourier transformed
to physical space to give the feedback law as a convolution integral of the form,

v̇(x, y = ±1, z, t) =

∫
Ω

(K±1,v(x − x̄, ȳ, z − z̄)v(x̄, ȳ, z̄, t)

+K±1,ω(x − x̄, ȳ, z − z̄)ω(x̄, ȳ, z̄, t)) dx̄ dȳ dz̄, (2.8)

where K±1,v and K±1,ω denote the physical-space feedback convolution kernels relating
v̇ at the upper and lower walls to the wall-normal velocity and wall-normal vorticity,
respectively, inside the flow domain. Typical control kernels are shown in figure 4.
For kernels computed via a similar procedure for the Falkner–Skan–Cooke boundary
layer profiles, see Högberg & Henningson (2002).
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Figure 4. Localized controller gains relating the state x inside the domain to the control
forcing u at the point {x = 0, y = −1, z = 0} on the wall: visualized are a positive (light)
and negative (dark) isosurface of the convolution kernels for (a) the wall-normal component
of velocity and (b) the wall-normal component of vorticity, plotting isovalues of ±200 and
±1 respectively. With the present choice of the non-dimensionalization, the peak magnitude
of the kernel in (a) is 3300 and the peak magnitude of the kernel in (b) is 17.5; to facilitate
comparison, the isosurface values are chosen at ∼6% of the peak value in both plots. The
kernels were computed with � = 1 and ReCL

= 2000, and the distances indicated are normalized
such that the channel half-width is unity.

2.1.2. Estimator strategy

Estimating the state of the flow based on measurements at the wall is a ‘dual’
problem to that of controlling the flow with wall actuation, in the sense that a closely
related mathematical procedure is used. In this problem, a computational model for
an ‘estimate’ of the current state of the flow system is first written down. (In a physical
implementation, this equation for the state estimate is computed in real time inside
the controlling electronics as the flow system evolves.) An equation for the error of the
state estimate is then determined, and volume forcing on the computational model
is sought to minimize some measure of the estimation error. An estimator of this type is
known as a Kalman filter, and is a standard problem. The single wavenumber case
was considered in Bewley & Liu (1998) with a problem formulation similar to the one
used in the present paper. Following the work done there, we now model the state
equation (2.2) and the skin-friction measurements of our system as disturbed by a
random (zero-mean white Gaussian) process ŵ such that

˙̂xh = N x̂h + B1ŵ − Z ˙̂
φ (2.9)

ŷh = C2 x̂h + D21ŵ, (2.10)

where

B1 = (G1 0), C2 x̂h =
G−1

2

ReCL




∂ω̂h

∂y

∣∣∣∣
y=+1

∂ω̂h

∂y

∣∣∣∣
y=−1


 , D21 = (0 αI),

where G1 is defined as the square root of the expected covariance of the state
disturbances and αG2 is defined as the square root of the expected covariance of the
measurement noise. We assume that these covariances are time invariant and that
the covariance of the measurement noise is non-singular. The problem is scaled such
that σ̄ (G2

1) = 1, and α is selected such that σ̄ (G2
2) = 1. Any known structure of the

disturbance covariances entering the problem should thus be accounted for in the
selection of the characteristics of G1 and G2 (both with unity maximum singular
value) during the compensator design, retaining the quantity α to reflect the balance
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between the magnitude of the measurement noise and the magnitude of the state

disturbances. Given that the blowing/suction distribution φ̂ and the lifting function
Z are known, the (noisy) measurements ŷh of the quantity C2 x̂h may be extracted
easily from the available (noisy) wall measurements of the streamwise or spanwise
drag. Only the field x̂h needs to be estimated in order to construct an estimate of the
complete state vector x̂s (or, indeed, to estimate x̂ itself); we will denote our estimate of
x̂h as x̂e, and our estimate of ŷh as ŷe. The model of the system which we will use in
our estimator is

˙̂xe = N x̂e − Z ˙̂
φ − ψ̂,

ŷe = C2 x̂e,

ψ̂ = L̂� ŷ = L̂( ŷh − ŷe).


 (2.11)

Note that the (unknown) effects of the disturbances ŵ are not included in the estimator

model. The estimator feedback rule ψ̂ = L̂� ŷ minimizing the expected value of the
L2-norm of the estimation error is given by

L̂ = − 1

α2
Y C∗

2,

where Y is the Hermetian positive-definite solution to the operator Riccati equation(
N∗Y + YN − YC∗

2

1

α2
C2Y + B1B

∗
1

)
x̂e = 0 ∀ admissible x̂e, (2.12)

in accordance with standard Kalman filter theory. Note that α2, which models the
assumed quality of the measurements, is used as an adjustable parameter to scale the

estimator feedback. Note also that the estimator feedback rule ψ̂ = L̂� ŷ decomposes
according to (

ψ̂ v̂e

ψ̂ ω̂e

)
=

(
L̂ v̂e,+1 L̂ v̂e,−1

L̂ ω̂e,+1 L̂ ω̂e,−1

)(
�ŷ(+1)
�ŷ(−1)

)
.

Unlike the control feedback K̂ , the estimator feedback L̂ represents the estimator
model forcing per unit length in the y-direction. Thus, simple interpolation of the

discrete quantity L̂ is sufficient to determine a continuous weighting function L̂ by
which a continuous analogue of the discrete estimator (2.11) may be forced via
feedback of the form

ψ̂ v̂e
(y) = L̂v̂e,+1(y)�ŷ(+1) + L̂v̂e,−1(y)�ŷ(−1)],

ψ̂ ω̂e
(y) = L̂ω̂e,+1(y)�ŷ(+1) + L̂ω̂e,−1(y)�ŷ(−1)].

}
, (2.13)

The Kalman filter problem described above has been derived for each wavenumber
pair {kx, kz} independently. The inverse Fourier transform of the Fourier-space
estimator feedback rule is given by the following convolution sums in physical space:

ψve
(x, y, z, t) =

∫ (
Lve,+1(x − x̄, y, z − z̄) �y(x̄, +1, z̄, t)

+ Lve,−1(x − x̄, y, z − z̄) �y(x̄, −1, z̄, t)
)
dx̄ dz̄,

ψωe
(x, y, z, t) =

∫ (
Lωe,+1(x − x̄, y, z − z̄) �y(x̄, +1, z̄, t)

+ Lωe,−1(x − x̄, y, z − z̄) �y(x̄, −1, z̄, t)
)
dx̄ dz̄,
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Figure 5. Localized estimator gains relating the measurement error (y − ŷ) at the point
{x = 0, y = −1, z = 0} on the wall to the estimator forcing terms v inside the domain:
visualized are a positive (light) and negative (dark) isosurfaces of the convolution kernels
for (a) the wall-normal component of velocity and (b) the wall-normal component of
vorticity, plotting isovalues of ±0.001 and ±0.035 respectively. With the present choice of
the non-dimensionalization, the peak magnitude of the kernel in (a) is 0.014 and the peak
magnitude of the kernel in (b) is 0.58, as in figure 4, to facilitate comparison, the isosurface
values are chosen at ∼6% of the peak value in both plots. The kernels were computed with
α = 100 and ReCL

= 2000.

where the estimator forcing kernels Lve,±1(x, y, z) and Lωe,±1(x, y, z) are the inverse

Fourier transforms of L̂v̂e,±1(kx, y, kz) and L̂ω̂e,±1(kx, y, kz) respectively. The structure
of L represents the forcing of the model equation in the estimator as a function
of a measurement error at a single point. Using �y(x̄, −1, z̄) = �yoδ(x̄)δ(z̄) in the
convolution integral results in ψve

(x, y, z) = Lve,−1(x, y, z)�yo and ψωe
(x, y, z) =

Lωe,−1(x, y, z)�yo, which facilitates this interpretation. Typical estimator forcing
kernels are shown in figure 5.

2.2. Computation of linear feedback kernels

To obtain the numerical results reported in the sections that follow, control
and estimator feedback gains were computed for a large array of wavenumber
pairs and then inverse-transformed to physical space, as described above. The
Orr–Sommerfeld/Squire system was discretized in the wall-normal direction using
Chebyshev collocation such that

fi = f (yi), yi = cos
iπ

N
, i = 0, 1, . . . , N.

As reported in the sections that follow, we took N ≈ 100 in this work. The
Differentiation Matrix Suite by Weideman & Reddy (2000) was used to create
the differentiation matrices by which the matrix operators for the state equation
were computed. Since a lifting technique is used in the present formulation (see
§ 2.1.1), the matrices for the homogeneous system can be found using the clamped
boundary condition technique suggested by Huang & Sloan (1993) and implemented
in Weideman & Reddy (2000). The problem with spurious eigenvalues discussed in
Bewley & Liu (1998) is thereby avoided in an effective manner. The integration
weights W (yj ) for the Chebyshev grid with the Gauss–Lobatto collocation points
were computed using the algorithm from Hanifi, Schmid & Henningson (1996).
These weights provide spectral accuracy in the numerical integrations used to assemble
the energy measure matrix Q . The algebraic Riccati equations found by discretization
of (2.5) and (2.12) were solved using the algorithm from Skelton (1988, p. 350); the
heart of this algorithm is the solution of the eigenvectors of a 2N × 2N matrix. This
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eigenvalue problem was solved via a Schur decomposition technique. Other methods
for solving Riccati equations are discussed in e.g. Laub (1991), but were not found to
be necessary in the present problem. The kernel computations were performed using
Matlab on a 833MHz DEC Alpha workstation and took about 2–3 hours for the
kernels presented here.

2.3. Localized convolution kernels

2.3.1. Kernel structure

The convolution kernels computed using the approach described above are depicted
in figures 4 and 5. The control convolution kernels shown in figure 4 angle away from
the wall in the upstream direction. Considering the shape of the mean flow profile
indicated in figure 1, this accounts for the convective delay which requires us to
anticipate flow perturbations on the interior of the domain with actuation on the wall
somewhere downstream. The estimation convolution kernels shown in figure 5, on
the other hand, extend well downstream of the measurement point. This accounts for
the delay between the motions of the convecting flow structures on the interior of the
domain and the eventual influence of these motions on the local drag profile on the
wall; during this time delay, the flow structures responsible for these motions convect
downstream. Note that the upstream bias of the control kernels and the downstream
bias of the estimation kernels, though physically tenable, were not prescribed in the
problem formulation. A posteriori study of the streamwise, spanwise and wall-normal
extent, the symmetry, and the detailed shape of such control and estimation kernels
provides us with a powerful new tool with which the fundamental physics of this
distributed fluid-mechanical system may be characterized.

2.3.2. Exponential decay

As mentioned previously, the present kernels decay exponentially far from the
origin. This characteristic was predicted theoretically by Bamieh et al. (2002) for
a broad class of spatially homogeneous systems. To the best of our knowledge,
the present paper presents the first numerical calculation of control and estimation
kernels with this property to be derived from the Navier–Stokes equation. In order
to better illustrate this decay, control kernels for the normal velocity have been
computed for ReCL

= 2000 and � = 1 with high resolution for four different sizes
of the computational box. The squared value of the kernels is first integrated in the
y-direction to obtain a representation of the kernel weights in the (x, z)-plane. This
planar representation is then integrated in z to show the behaviour as a function
of x, and integrated in x to show the behaviour as a function of z, as shown in
figure 6. The results are normalized by their maximum value. Due to the imposed
periodicity, the exponential decay of the kernels is interrupted for small box sizes.
However, by increasing the size of the computational box, we clearly see that the decay
of the magnitude of the tails is significantly extended, while the shape of the kernel
in the vicinity of the origin remains unchanged. In a sufficiently large box, we should
see decay of the kernel magnitude over several orders of magnitude as we move
away from the origin. However, computation of the kernel over such a large domain
is difficult, as it is computationally expensive. Plots such as figure 6 are sufficient
to illustrate that the kernels we seek are converged in the region of interest near
the origin. The exponential decay depicted in figure 6 is representative of the other
kernels computed; similar decay was observed for the v and ω components of the
system, for the control and estimation problems, and for the range of values of α and
� tested.
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Figure 6. Illustration of exponential decay of the control convolution kernel for normal
velocity: (a) as a function of x, (b) as a function of z. Kernels computed with: , box size
2π × 2π with resolution 32 × 64 in x × z; , box size 3π × 3π with resolution 48 × 96 in
x × z; , box size 4π × 4π with resolution 64 × 128 in x × z; and , box size 6π × 6π
with resolution 96 × 192 in x × z. In all cases � = 1, ReCL

= 2000, and the number of gridpoints
in y was 70.

3. Simulations
3.1. Simulation of the nonlinear system

The direct numerical simulation code of Bewley et al. (2001) was used to perform
simulations of the constant-mass-flux channel flow system. This code is pseudospectral
with 3/2 dealiasing in the streamwise and spanwise directions, and uses an energy-
conserving second-order finite-difference technique in the wall-normal direction. Time
advancement is performed with the hybrid second-order Crank–Nicholson/third-
order Runge–Kutta method developed by Aksevoll & Moin (1995). In this scheme,
the treatment of the derivatives in the wall-normal direction is implicit to enhance
the stability of the code when blowing/suction boundary conditions are applied. A
fractional-step method is used to update the pressure and to enforce the divergence-
free constraint. The transition thresholds calculated in Reddy et al. (1998) for the
uncontrolled system were verified accurately with the present DNS code using initial
conditions of precisely the same structure.

To make comparisons easier, the thresholds obtained by Reddy et al. (1998) are
tabulated in table 1. The initial conditions used for the cases of oblique waves and
streamwise vortices are such that they have the ‘worst-case’ structure in the y-direction
that maximizes their transient energy growth. These initial flow perturbations are
contained in the lowest wavenumbers represented in the computational box used for
the simulations. In addition, random noise in the form of Stokes modes with 1% of
the energy of the primary perturbation is added, distributed over all combinations
of the wavenumbers kx = (0, ±1, ±2) kx0 and kz = (0, ±1, ±2)kz0. In the random
noise case all the energy is distributed over these wavenumbers. The box size in the
streamwise vortex case is 2π × 2 × π in x × y × z with the fundamental wavenumbers
kx0 = 1 and kz0 = 2. For both the oblique wave and random noise cases the box size
is 2π × 2 × 2π in x × y × z having the fundamental wavenumbers kx0 = 1 and kz0 = 1.
The threshold values were found by a bisection algorithm, and were verified using a
different resolution. This requires many simulations; a condensed presentation of the
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Scenario ReCL
Resolution Threshold energy

SV 2000 16 × 81 × 64 6.48 × 10−6

3000 16 × 81 × 64 1.49 × 10−6

5000 16 × 81 × 64 2.60 × 10−7

OW 2000 16 × 81 × 64 2.38 × 10−6

3000 16 × 81 × 64 5.28 × 10−7

5000 16 × 81 × 64 1.16 × 10−7

N 2000 32 × 81 × 64 7.25 × 10−5

3000 32 × 81 × 64 2.63 × 10−5

5000 40 × 97 × 80 8.62 × 10−6

Table 1. Uncontrolled transition threshold energy for streamwise vortices (SV), oblique waves
(OW) and random noise (N) determined by Reddy et al. using a Fourier, Chebyshev,
Fourier discretization. The maximum uncertainty in the thresholds shown is ±2.5%; that
is, initial perturbations with 2.5% more energy cause transition to turbulence, whereas initial
perturbations with 2.5% less energy relaminarize.

Improvement
Scenario ReCL

Resolution Threshold energy factor

SV 2000 16 × 128 × 64 6.53 × 10−5 10
3000 16 × 128 × 64 1.44 × 10−5 9.6
5000 16 × 128 × 64 3.00 × 10−6 11.5

OW 2000 16 × 128 × 64 2.44 × 10−4 102
3000 16 × 128 × 64 5.77 × 10−5 109
5000 16 × 128 × 64 1.43 × 10−5 122

N 2000 32 × 128 × 64 5.08 × 10−4 7
3000 32 × 128 × 64 1.79 × 10−4 6.8
5000 32 × 128 × 64 4.88 × 10−5 5.7

Table 2. Full-state feedback: controlled transition thresholds using a Fourier, finite difference,
Fourier discretization. Verified using lower resolution 12 × 128 × 42 and 28 × 128 × 58. The
maximum uncertainty in the thresholds shown is ±2%. For comparison the energy density of
the laminar mean flow is 0.2667 in all cases.

results such as that shown in tables 1 and 2 has required many hundreds of hours of
supercomputer time.

3.2. Modification of transition thresholds with full-state feedback

Direct numerical simulations of the fully nonlinear Navier–Stokes equations with
linear feedback control were performed at three different subcritical Reynolds
numbers, ReCL

= 2000, 3000 and 5000. Control kernels were computed using the
same resolution and box size as in the simulations with � = 0.1 in all cases. Through
an iterative procedure the transition thresholds have been determined for the three
different initial flow perturbations (streamwise vortices, oblique waves, and random
noise), as reported in table 2 and figure 7. The ‘Improvement factor’ column in
table 2 shows the relation between the threshold for the controlled and uncontrolled
cases. If this factor is 2, it means that the initial energy density threshold value is
approximately two times higher in the controlled case than in the uncontrolled case.
The transition threshold for the streamwise vortex perturbation is increased up to
11.5 times the uncontrolled value, corresponding to more than a threefold increase
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Figure 7. Transition threshold energy versus Reynolds number for feedback-controlled plane
Poiseuille flow. Shown are the curves obtained from direct numerical simulations with control
compared with the uncontrolled cases. One plot for each case starting with various initial
conditions: (a) optimal streamwise vortices, (b) a pair of optimal oblique waves, and (c)
divergence-free low-wavenumber noise. The open circles are the values obtained with full
information state feedback control and the filled circles are the values for the uncontrolled
case computed by Reddy et al. (1998). The solid lines are least square fits to the data.

in perturbation amplitude. Oblique-wave perturbations, which in the uncontrolled
case have the lowest threshold energy, appear to be the easiest to control, since the
threshold energy is increased up to 122 times the uncontrolled value. One reason for
this might be that the control of the linear growth of the oblique waves efficiently
prevents the nonlinear generation of streamwise vortices, which in turn effectively
mitigates the generation of streamwise streaks. In the controlled case, the streamwise
vortex perturbations have the lowest values of the transition thresholds, suggesting
that the underlying transition mechanism in the streamwise vortex scenario is the most
powerful one in the controlled flow. The smallest factor for the increase in transition
threshold is obtained for the random perturbation; however, even in the controlled
system, the threshold energy for transition due to randomly distributed perturbations
is uniformly larger (by at least a factor of two) than the other transition scenarios
studied. Note that once the flow has transitioned to turbulence, the controller is not
able to relaminarize the turbulent flow using the present formulation.

3.3. Effectiveness of truncated kernels

Performing truncation of the exponentially decaying tails of the kernels by setting
their values to zero beyond a certain radius from the origin (smaller than the
box size in which they were computed) results in kernels with spatially compact
support. To test the effectiveness of a truncated kernel, the kernel used for the
threshold computations was truncated by setting it to zero outside a box with the
limits x̄ ∈ (−3, 1) and z̄ ∈ (−2.5, 2.5) using a smoothed step function. Compare
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Figure 8. Visualizations showing the reaction of the control to the initial conditions depicted
in figure 2: (a) controlled oblique waves, showing positive (light) and negative (dark) isosurfaces
of half of the maximum magnitude of the normal velocity. (b) Controlled streamwise vortices,
showing contours of v (solid contours for positive velocity and dashed for negative), and
cross-flow velocity vectors (projected onto the z, y-plane) at x = 0.

with figure 6 to see approximately how much of the kernel information is ignored
through this operation. This method of truncation might seem rather abrupt, but
more sophisticated schemes for performing the truncation were not found to be
necessary. Applying such a truncated kernel in the direct numerical simulation of
a random noise perturbation at ReCL

= 2000 reproduced the same estimate of the
approximate threshold value as for the untruncated kernels reported in table 2
(that is, 5.08 × 10−4 ± 2%). This effectively demonstrates (as expected) that kernel
truncation, if performed sufficiently far from the origin, does not significantly degrade
the performance of the control, despite the significant reduction in the kernel extent
resulting from the truncation and the significant reduction in the computational effort
required to implement the feedback calculation when such a calculation is performed
as a physical-space convolution.

3.4. Dynamics of the controlled flows

In order to try to understand how the controller acts, the oblique wave and streamwise
vortex cases with control are now examined in greater detail. In figure 8, the velocity
fields, a short time after the full information control is applied, are shown for the
oblique wave (a) and streamwise vortex (b). The action of the control has been
studied with the help of animations in order to understand how the control acts
on the perturbations.† In the oblique wave case the isosurfaces in figure 8(a) are
elongated in the streamwise direction, compare with figure 2(a), and move down to
the wall where they shrink again. New, almost stationary, oblique waves are formed
in the centre of the channel and these are then controlled in an out-of-phase fashion

† These animations are available at http://turbulence.ucsd.edu/gallery/transition.
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Figure 9. Energy evolution in different modes for control of oblique waves. The Reynolds
number is ReCL

= 2000 and the perturbation energy density is 2.6 × 10−6. The (0, 2) mode
slowly decays to zero after t = 100. Plotted are: , the total flow perturbation energy in
all wavenumber components other than {0, 0}, as well as the energy in the {1, 1} component
( ), the {0, 2} component ( ) and the other components ( ). Compare with figure
3(a) for the uncontrolled case.

while accelerating. There is then a rapid reduction of the perturbation amplitude and
only a streaky perturbation remains. Even with the help of animations it is difficult
to explain the action of the control in detail. The process is complicated and in
certain respects non-intuitive, and the advantage of using control theory, which does
not require a priori understanding of the ‘dominant mechanisms’ of the transition
process, is readily apparent. It is clear that the growth of the oblique wave is efficiently
lowered by the control by comparing figure 9 and figure 3(a). It is interesting to note
that the control energy is shifted from one set of wavenumbers to another set of
wavenumbers as the flow evolves in time, as shown in figure 10. Initially the oblique
wave mode is the focus of the control effort, but when this mode has decayed to a
level lower than the streak modes, the control focuses its effort on the streak modes
instead. It should be noted that the contour levels are not the same in the different
frames in figure 10. The largest energy is used initially before the oblique wave mode
has its maximum and then it rapidly decays. Thereby the streaks are not forced
as efficiently by the oblique waves and the streak amplitude is much lower than in
the case without control. When the oblique waves have decayed a streaky structure
appears and then the control acts in a way similar to the streamwise vortex case.

In the streamwise vortex case, the wall-normal velocity appears to be approximately
of ‘opposition’ type initially. Figure 8(b) shows the reaction of the control to the
streamwise vortex initial condition. In the animation, one can see that the vortices are
pushed away from the wall by buffer vortices created by the blowing and suction; a
similar result is shown in figure 12(c) of Bewley & Liu (1998). In addition, virtual walls
(using the terminology of Hammond, Bewley & Moin 1998) are created near the centre
of the channel. Streamwise streaks rapidly develop in the regions between the real
walls and the virtual walls as a result of the blowing and suction applied. The virtual
walls then move slowly towards the real walls as the blowing and suction decrease,
and the vortices reappear between the virtual walls in the centre of the channel. The
streaks in the near-wall region decay as the blowing and suction weaken, and since a
low-speed streak is located where the vortices in the centre of the channel move
momentum from the inner part of the channel towards the virtual wall, a high-speed
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Figure 10. Contour plot of φ2(kx, kz) for control of oblique waves at t = [1, 43, 47, 50, 54, 100].
where kx = n kx0 and kz = mkz0. Notice that the contour levels are not equal in the differ-
ent plots but decreases with time and the maximum level is [9.37 × 10−7, 4.25 × 10−9,
2.56 × 10−9, 2.49 × 10−9, 2.47 × 10−9, 1.18 × 10−9] for each frame respectively.

streak is created above the low-speed streak (and vice versa). These streaks in the
interior of the channel merge slowly, through diffusion, then slowly decay. The virtual
walls slowly move towards the centre of the channel again as the streaks decrease
and eventually disappear.

3.5. Convergence of estimator with feedback from measurements

Estimating the state of the flow from available measurements is a crucial step towards
practical implementation of this type of controller. Possible measurements are e.g. the
components of the shear stress and pressure fluctuations on the wall. Many different
independent measurements give more information about the state of the flow. In
the present study we have focused on the use of a measurement of the wall-normal
derivative of the wall-normal vorticity component (note that this quantity is easily
calculated from measurements of ∂u/∂y and ∂w/∂y). Using this one measurement
quantity appears to be sufficient to get exponential convergence of the state estimate,
but it is rather slow. The estimator forcing kernels are computed as described in § 2.1.2
with α = 0.1, and then used to force the flow in a fully nonlinear simulation. This
is known as an extended Kalman filter. Estimation of a nonlinear fluid system using
linear estimator feedback is discussed further in Bewley (1999). The initial state in
the estimator is an unperturbed laminar flow at the same Reynolds number as the
measured flow in all cases presented here. In figure 11 the energy of the difference
between the state in the measured flow and in the estimator is plotted versus time. The
initial state in the unknown flow is a random perturbation at an energy level below
the transition threshold. The initial guess in the estimator is an unperturbed laminar
flow at ReCL

= 3000. Estimator forcing kernels are computed for both G1G
∗
1 = Q

and G1G
∗
1 = I . Using either estimator, there is an initial transient increase in the

error after which it decays at an exponential rate. The transient is due to the fact
that it is not possible to obtain uniform decay of the state error using only the
current measurements, as the system representing the estimator error is non-normal,
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Figure 11. Convergence of estimator computed with α = 0.1 for a random perturbation with
an energy just below the transition threshold at ReCL

= 3000. Solid line with G 1G
∗
1 = Q and

dashed line with G 1G
∗
1 = I . (a) Logarithmic in vertical axis, (b) logarithmic in horizontal axis.

just like the controlled closed-loop system. For more discussion about the closed-loop
properties of the linear system see Bewley & Liu (1998). Using G1G

∗
1 = Q gives a

small transient during a long time whereas using G1G
∗
1 = I gives a larger transient for

a shorter time. Since both the initial behaviour and the convergence are important
issues, there is no clear reason why one would be preferred to the other. The amplitude
of the initial transient could be of importance when the perturbation energies are
large and nonlinear effects are strong. If the estimator state undergoes transition due
to this transient, the compensator cannot be expected to work particularly well. For
this reason the estimator with G1G

∗
1 = Q that has a lower amplitude of the transient

is the primary choice for the estimator-based control studies that follow.

3.6. Modification of transition thresholds with estimator-based control

In the case of measurement-based control we run two different nonlinear direct
numerical simulations simultaneously: one with the initial perturbation we wish to
control (this represents our ‘physical system’ in this test), and one with measurement
feedback and no initial perturbation (this represents our ‘estimator’ in this test).
Measurements are taken in both simulations and the difference between the two is
used to force the estimator using the estimator feedback kernels. The state in the
estimator, which as shown in the previous section for the uncontrolled case converges
exponentially to the correct state, is then used to compute the feedback control which
is then applied in both simulations simultaneously. This combination of estimator and
controller is called a measurement-based dynamic compensator. The control kernels
are the same as used for the full information case and the estimation kernels are
computed with the same box size and resolution as the simulations with α = 0.1.

The compensator was first tested for an oblique wave at ReCL
= 2000, and a

comparison of the perturbation energy with the full information controller and for
the uncontrolled flow is plotted in figure 12. In this case the initial energy density
was 1.25 × 10−5, but the perturbation did not have the optimal shape in y and
no additional random noise was added. The total energy reduction for the full-
information controller and the measurement-based compensator appears to be of
the same order. The compensator performance was even closer to that of the full
information controller if a good initial guess for the state in the estimator was
provided. This demonstrates that the compensator is successful in reducing the energy
growth of an oblique wave perturbation, but the question remains as to what happens
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Improvement
Scenario ReCL

Resolution Threshold energy factor

SV 2000 16 × 128 × 64 1.88 × 10−5 2.9

OW 2000 16 × 128 × 64 1.38 × 10−5 5.8

N 2000 16 × 128 × 64 9.50 × 10−5 1.31
3000 16 × 128 × 32 3.38 × 10−5 1.28
5000 16 × 128 × 32 1.13 × 10−5 1.30

Table 3. Compensator-controlled transition thresholds using a Fourier, finite difference,
Fourier discretization, taking G 1G

∗
1 = Q , for the initial perturbations: SV: streamwise vortex,

OW: oblique wave and N: random perturbation. The maximum uncertainty in the thresholds
shown is ±6%. For comparison the energy density of the laminar mean flow is 0.2667 in all
cases.
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Figure 12. Performance of full-information linear controller (dashed) and compensator
using G 1G

∗
1 = Q (solid) compared to the uncontrolled (dotted) energy evolution.

when the amplitude of the perturbations is large and noise is present. In order to test
the compensator performance, the ‘worst-case’ situation when the initial state in the
estimator is an unperturbed flow is considered.

Simulations are performed at Reynolds number 2000 for all three types of
initial perturbations; table 3 contains the resulting transition thresholds from these
simulations. With G1G

∗
1 = I , only one case at ReCL

= 2000 with random noise
is considered. The transition threshold for the streamwise vortex perturbation is
increased by 2.9 times the uncontrolled value. Oblique-wave perturbations appear
to be the easiest to control using the compensator (as with the full-state feedback
controller), and the threshold energy is increased by 5.8 times the uncontrolled value.
In the compensator-controlled case the oblique-wave perturbations, as opposed to
streamwise vortices in the full information control cases, have the lowest values of
the transition threshold.

As for the full-information case, the smallest factor for the increase in transition
threshold is obtained for the random perturbation and is only 1.3, but again the
threshold energy in the random perturbation cases is much larger than in the other
two cases, so the control effectiveness in this case is probably not as important as the
control effectiveness in the other two cases. For estimator feedback computed with
G1G

∗
1 = I (not shown in table 3) in the ReCL

= 2000 random-noise case (N), the initial
transient in the estimator is larger, but the improvement factor is increased to 1.48
with the corresponding compensator. The large initial transient in the estimator in this
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case therefore does not seem to be the dominant factor in the overall performance.
The choice of G1 is a delicate issue, and further research is needed to find the optimal
choice for transition control. Remember also that the results can be improved by
providing a good initial guess in the estimator, suggesting an alternative route to
improved performance. The small increase in threshold values for the random noise
perturbation in the compensator case further suggests that this is the most difficult
perturbation to control. For the random noise perturbation, simulations at the higher
Reynolds numbers 3000 and 5000 are performed to verify that the factor is kept
approximately constant in the compensator case also, as seen in table 3.

4. Discussion
The effectiveness of the strategy for control and estimation of transitional flows

presented in § 2 has been quantified for three significant types of perturbations
in subcritical channel flow studied in Reddy et al. (1998). A large number of
direct numerical simulations have been performed in order to determine the
transition threshold energies for the controlled flows both in the full-information
and measurement-based settings. The localization of the kernels with exponentially
decaying tails and the small effect on their efficiency from truncation compared to
the untruncated kernels has been demonstrated.

In the full-information control case, we have shown that the controller can increase
the threshold energies for transition by as much as 122 times the uncontrolled value
for oblique-wave perturbations and approximately 10 and 7 times for the streamwise-
vortex and random-noise perturbations respectively. The lowest threshold value is
obtained for the streamwise vortices in the controlled case, indicating that the
transition mechanism involved in this scenario is the most powerful one. The factor
of increase in the threshold energies is approximately constant for different Reynolds
numbers for all types of perturbations considered. This results in lower threshold
values for higher Reynolds numbers.

The measurement-based state estimator was implemented as an extended Kalman
filter and shown to give exponential convergence of the estimated state to the measured
state. This convergence was found to be rather slow, and further research is necessary
in order to improve the results. Additional measurements, such as wall pressure
fluctuations and independent streamwise and spanwise skin friction measurements,
should be implemented in an attempt to accelerate convergence.

The full compensator performed well for the early stages of oblique transition.
For the transition threshold calculations we have not quantified the compensator
performance to the same extent as in the full-information case. One reason for this
is that these simulations are twice as costly compared to the full-information case
since two flow fields have to be marched in time simultaneously. As noted earlier the
estimator convergence also needs to be improved. A rule of thumb when designing
compensators is that the estimator should converge faster than the controller in order
to achieve good and robust performance. The development of more efficient estimators
will hopefully provide a means to raise these threshold values for the compensator to
levels close to those obtained with the full-information controller.

Since the problem we are studying in this paper is idealized, it should be clarified
how these results will lead to practical feedback compensators to be used in
engineering applications. The advantage of the current approach is that truncation in
physical space results in kernels that have compact spatial support with maintained
performance, and this facilitates a convenient strategy for decentralized physical-space
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implementation. For a thorough discussion about the implications of this property
of the kernels and practical implementation issues the reader is deferred to Bewley
(2001).

4.1. Extensions

4.1.1. H∞ control

The present formulation can, with small modifications, also be used to compute
robust (H∞) compensators. The idea of robust control provides a very natural means
of focusing the compensation to respond appropriately to disturbance forcing of
worst-case structure. It is well known in the controls literature that optimal (H2)
controllers typically do quite well when full-state information is available, but the be-
nefits of designing robust (H∞) compensator feedback to respond to worst-case system
disturbances can sometimes be quite significant when only limited noisy measurements
are available. The idea of designing controls to mitigate the worst-case system response
is especially important when one is attempting to prevent the triggering of
hydrodynamic transition by such worst-case disturbances. In the case of H∞ control,
the problems of control and estimation are coupled, and the separation principle no
longer applies. The general framework for linear robust control is described in detail in
Doyle et al. (1989). In Bewley & Liu (1998), H∞ compensation was calculated for one
wavenumber pair of the present problem, and was shown to provide a significantly
better response to worst-case perturbations in the linear setting than optimal H2

compensation. A similar study was also performed by Baramov et al. (2000).

4.1.2. Spatially developing flows

The extension to spatially evolving flows is straightforward. The modification
necessary is to include the base flow from Blasius, Falkner–Skan, or Falkner–Skan–
Cooke flows and then proceed as described in the present paper to compute the
control and estimation kernels. Assuming that the flow is locally parallel, a number
of kernels computed using the Orr–Sommerfeld/Squire equations with the local mean
flow profiles can then be applied at different streamwise positions to cover a large
control domain. This is done using one control kernel in one streamwise interval in
Högberg & Henningson (2002) for stationary as well as time-varying perturbations.
Application of measurement-based control in this case is a natural next step.

4.1.3. Reduced-order compensation

The current system has very large dimensions and could be difficult to realize in
real-time applications. One solution to this problem is to perform model reduction
of the system and then develop a low-dimensional compensator. Open-loop model
reduction for control of transition in two-dimensional channel flow is evaluated in
e.g. Cortelezzi & Speyer (1998) and Joshi et al. (1999), and the three-dimensional
problem is discussed in Kang et al. (1999). This is an active area of research and
many possibilities remain to explored.

The authors thank Bassam Bamieh and Scott Miller for useful discussions related
to this work, and Satish Reddy for providing the initial conditions for the transition
simulations.
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